If tan^2theta = 1 - a^2tan2θ=1−a2, then sectheta + tan^3thetacsctheta = (2 - a^2)^nsecθ+tan3θcscθ=(2−a2)n. What is the value of nn?
4 Answers
Explanation:
a^2 = 1 - tan^2thetaa2=1−tan2θ
Substitute:
sectheta + tan^3thetacsctheta = (2 - (1 - tan^2theta))^nsecθ+tan3θcscθ=(2−(1−tan2θ))n
Apply the following identities:
1/costheta + sin^3theta/cos^3theta xx 1/sintheta = (2 - (1 - tan^2theta))^n1cosθ+sin3θcos3θ×1sinθ=(2−(1−tan2θ))n
1/costheta + sin^2theta/cos^3theta = (1 + tan^2theta)^n1cosθ+sin2θcos3θ=(1+tan2θ)n
Put the left hand side on a common denominator and apply the identity
(cos^2theta + sin^2theta)/cos^3theta = (sec^2theta)^ncos2θ+sin2θcos3θ=(sec2θ)n
Use the identity
1/cos^3theta = (sec^2theta)^n1cos3θ=(sec2θ)n
sec^3theta = (sec^2theta)^nsec3θ=(sec2θ)n
We can call
x^3 = (x^2)^nx3=(x2)n
x^3 = x^(2n)x3=x2n
3 = 2n3=2n
n = 1.5n=1.5
Hopefully this helps!
Explanation:
Let
Now,
I am sorry that I have involved
I have obtained an enforcing result
Explanation:
then
squaring
but from
arriving at
Given
Now