If tan^2theta = 1 - a^2, then sectheta + tan^3thetacsctheta = (2 - a^2)^n. What is the value of n?

4 Answers
Nov 29, 2016

1.5

Explanation:

a^2 = 1 - tan^2theta

Substitute:

sectheta + tan^3thetacsctheta = (2 - (1 - tan^2theta))^n

Apply the following identities:

•secbeta = 1/cosbeta
•tan beta = sinbeta/cosbeta
•cscbeta = 1/sinbeta

1/costheta + sin^3theta/cos^3theta xx 1/sintheta = (2 - (1 - tan^2theta))^n

1/costheta + sin^2theta/cos^3theta = (1 + tan^2theta)^n

Put the left hand side on a common denominator and apply the identity 1 + tan^2beta = sec^2beta.

(cos^2theta + sin^2theta)/cos^3theta = (sec^2theta)^n

Use the identity sin^2beta + cos^2beta = 1.

1/cos^3theta = (sec^2theta)^n

sec^3theta = (sec^2theta)^n

We can call sectheta = x.

x^3 = (x^2)^n

x^3 = x^(2n)

3 = 2n

n = 1.5

Hopefully this helps!

Nov 29, 2016

3/2 and theta in Q_1.

Explanation:

Let t = tan theta. Then. t^2=1-a^2>=0 to |a|<=1

Now,

sec theta+tan^3theta csc theta

=+-sqrt(1+t^2)+t^3(+-sqrt(I+1/t^2))

=+-sqrt(1+t^2)(1+-t^2)

=+-(1+t^2)^(3/2), for + sign in the second factor ( csc theta > 0)

=+-(2-a^2)^(3/2 ), - sign is taken when sec theta < 0

=(2-a^2)^n to sec theta > 0 and

n=3/2 and csc theta >0 to theta in Q_1#.

I am sorry that I have involved +-. But, this is Mathematics.

I have obtained an enforcing result theta in Q_1.

Nov 29, 2016

n = 3/2

Explanation:

1/costheta+sin^3theta/cos^3theta 1/sintheta=1/costheta(1+tan^2theta)=(2-a^2)^n

then

costheta=(2-a^2)/(2-a^2)^n=(2-a^2)^(-(n-1))

squaring

cos^2theta=(2-a^2)^(-2(n-1))

but from tan^2theta=(1-a^2)->cos^2theta=(2-a^2)^(-1)

arriving at

(2-a^2)^(-2(n-1))=(2-a^2)^(-1) so

2(n-1)=1->n=3/2

Nov 29, 2016

Given

tan^2theta=1-a^2

1+tan^2theta=1+1-a^2

sec^2theta=2-a^2

Now
sectheta+tan^3thetacsctheta=(2-a^2)^n

=>sectheta+tan^3thetaxx1/sintheta=(2-a^2)^n

=>sectheta(1+tan^3thetaxxcostheta/sintheta)=(2-a^2)^n

=>sectheta(1+tan^3thetaxx1/tantheta)=(sec^2theta)^n

=>sectheta(1+tan^2theta)=(sec^2theta)^n

=>secthetaxxsec^2theta=sec^(2n)theta

=>sec^3theta=sec^(2n)theta

=>2n=3

:.n=3/2