If #x_1#,#x_2#,#x_3#,......,#x_n# are #n# real numbers satisfying #0<x_1<x_2<...<x_n<pi/2#, how do you prove that #tanx_1 < (sinx_1+sinx_2+...+sinx_n)/ (cosx_1+cosx_2+...+cosx_n) < tanx_n#?
2 Answers
See explanation...
Explanation:
Here are the things I will assume are known:
#tan x = (sin x)/(cos x)#
In the interval
#{ (sin x > 0), (cos x > 0), (tan x " is strictly monotonic increasing with " x) :}#
For brevity use the abbreviations:
#{ (s_k = sin x_k), (c_k = cos x_k), (t_k = tan x_k) :}#
Note that if
#a/b < c/d# if and only if#ad < bc#
So:
#s_1/c_1 < s_2/c_2 " " =>#
#s_1 c_2 < s_2 c_1 " " =>#
#s_1 c_2 + s_1 c_1 < s_2 c_1 + s_1 c_1 " " =>#
#s_1(c_1+c_2) < c_1(s_1+s_2) " " =>#
#s_1/c_1 < (s_1+s_2)/(c_1+c_2)#
and:
#s_1/c_1 < s_2/c_2 " " =>#
#s_1 c_2 < s_2 c_1 " " =>#
#s_1 c_2 + s_2 c_2 < s_2 c_1 + s_2 c_2 " " =>#
#(s_1+s_2)c_2 < (c_1+c_2)s_2 " " =>#
#(s_1+s_2)/(c_1+c_2) < s_2/c_2#
So we find:
#s_1/c_1 < (s_1+s_2)/(c_1+c_2) < s_2/c_2#
In general, if we have proved (for some
#(s_1+s_2+...+s_k)/(c_1+c_2+...+c_k) < s_k/c_k#
then since
#(s_1+s_2+...+s_k)/(c_1+c_2+...+c_k) < s_(k+1)/c_(k+1)#
and hence:
#((s_1+s_2+...+s_k))/((c_1+c_2+...+c_k)) < ((s_1+s_2+...+s_k)+s_(k+1))/((c_1+c_2+...+c_k)+c_(k+1))#
Applying this for each
#s_1/c_1 < (s_1+s_2+...+s_n)/(c_1+c_2+...+c_n)#
Similarly, if we have proved (for some
#s_k/c_k < (s_k+s_(k+1)+...+s_n)/(c_k+c_(k+1)+...+c_n)#
then since
#s_(k-1)/c_(k-1) < (s_k+s_(k+1)+...+s_n)/(c_k+c_(k+1)+...+c_n)#
and hence:
#(s_(k-1)+(s_k+s_(k+1)+...+s_n))/(c_(k-1)+(c_k+c_(k+1)+...+c_n)) < (s_k+s_(k+1)+...+s_n)/(c_k+c_(k+1)+...+c_n)#
Applying this for each
#(s_1+s_2+...+s_n)/(c_1+c_2+...+c_n) < s_n/c_n#
So
See below
Explanation:
Given two real fractions such that
calling
we have
but
or
Now generalizing, if we have
We know that if