If y = a^(1/{1-log_a x}) Z = a^(1/{1-log_a y}) prove that x = a^(1/{1-log_a z}) ?

2 Answers
Aug 27, 2015

Have a look:

Explanation:

Let us take log_a of the first to get:
log_ay=1/(1-log_ax)
And also of the second:
log_az=1/(1-log_ay)
Substitute the first into the second:
log_az=1/(1-1/(1-log_ax))
Rearrange:
log_az=1/((cancel(1)-log_axcancel(-1))/(1-log_ax)) change sign on the right and rearrange again:
log_azlog_ax=log_ax-1
log_azlog_ax-log_ax=-1
Collect log_ax:
log_ax[log_az-1]=-1
Change sign and isolate log_ax:
log_ax=1/(1-log_az)
Take the power of a on both sides:
x=a^(1/(1-log_az))

Aug 27, 2015

Require theory:
log_c b^n = n log_c b
log_c c = 1

From question:
y = a^(1/(1-log_a x)) ... (Eq 1)
z = a^(1/(1-log_a y)) ...(Eq 2)

Take log on both sides of equation 2:
log_a z = 1/(1-log_a y)
1 - log_a y = 1/log_a z

Substitute expression for y:
1 - 1/(1-log_a x) = 1/log_a z
log_a z/(log_a z - 1) = 1-log_a x
log_a x = 1 - log_a z/(log_a z - 1) = -1/(log_a z - 1)
x = a^(1/(1-log_a z))