In the complex plane, what does abs(z+1 ) +abs(z-1)= 8 look like?

1 Answer
Jun 14, 2016

The ellipse 15 x^2 + 16 y^2 = 240

Explanation:

Making z = x + i y we have

abs(z+1)=abs(x+1+i y)=sqrt((x+1)^2+y^2)

also

abs(z-1)=abs(x-1+i y)=sqrt((x-1)^2+y^2)

then

abs(z+1)+abs(z-1) = 8 is equivalent to

sqrt((x+1)^2+y^2) +sqrt((x-1)^2+y^2)=8

squaring

(sqrt((x+1)^2+y^2) +sqrt((x-1)^2+y^2))^2=8^2

and again

(2 sqrt[(-1 + x)^2 + y^2] sqrt[(1 + x)^2 + y^2])^2 = (8^2-(2 + 2 x^2 + 2 y^2))^2

Finally

15 x^2 + 16 y^2 = 240

an ellipse.

enter image source here