Integrate the following int t/(t^4 +2) dt ?

2 Answers
Feb 19, 2017

1/(2sqrt2)tan^-1(t^2/sqrt2)+C

Explanation:

Let t^2=sqrt2tantheta. This implies that 2tdt=sqrt2sec^2thetad theta. Then:

I=1/2int(2tdt)/((t^2)^2+2)=1/2int(sqrt2sec^2thetad theta)/((sqrt2tantheta)^2+2)

Continuing on and using tan^2theta+1=sec^2theta:

I=1/sqrt2intsec^2theta/(2tan^2theta+2)d theta=1/(2sqrt2)intsec^2theta/sec^2thetad theta=1/(2sqrt2)intd theta

We're working in terms of theta:

I=1/(2sqrt2)theta+C

From t^2=sqrt2tantheta we see that theta=tan^-1(t^2/sqrt2):

I=1/(2sqrt2)tan^-1(t^2/sqrt2)+C

I solved this way:
enter image source here