Integrate the following using infinite \bb\text(series) ?

(a) \int(\arctan(4x))/(x^-7)dx

1 Answer
May 10, 2018

int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/((2n+1)(2n+9) )x^(2n+9) +C

Explanation:

Start from:

arctan(4x) = int_0^(4x) dt/(1+t^2)

Expand now the integrand using the geometric series:

arctan(4x) = int_0^(4x) sum_(n=0)^oo (-1)^nt^(2n)dt

for abs (4x) < 1 the series is absolutely convergent and we can integrate term by term:

arctan(4x) = sum_(n=0)^oo (-1)^nint_0^(4x) t^(2n)dt

arctan(4x) = sum_(n=0)^oo (-1)^n (4x)^(2n+1)/(2n+1)

arctan(4x) = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)x^(2n+1)

Dividing by x^(-7) means multiplying by x^7 and we can do it again term by term:

arctan(4x)/x^(-7) = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)x^(2n+8)

and integrating again term by term:

int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/(2n+1)int x^(2n+8) dx

int arctan(4x)/x^(-7)dx = sum_(n=0)^oo (-1)^n 2^(4n+2)/((2n+1)(2n+9) )x^(2n+9) +C