Integrate the following using INFINITE SERIES (no binomial please)?

\int(\ln(1+x^2))/x^wdxln(1+x2)xwdx

1 Answer
May 12, 2018

int ln(1+x^2)/x^w = C+sum_(n=0)^oo (-1)^n/(n+1)x^(2n+3-w)/(2n+3-w)ln(1+x2)xw=C+n=0(1)nn+1x2n+3w2n+3w

Explanation:

Using the MacLaurin expansion of:

ln(1+t) = sum_(n=0)^oo (-1)^nt^(n+1)/(n+1)ln(1+t)=n=0(1)ntn+1n+1

let: t= x^2t=x2: to get

ln(1+x^2) = sum_(n=0)^oo (-1)^nx^(2n+2)/(n+1)ln(1+x2)=n=0(1)nx2n+2n+1

then divide by x^wxw and integrate term by term:

ln(1+x^2)/x^w = sum_(n=0)^oo (-1)^nx^(2n+2-w)/(n+1)ln(1+x2)xw=n=0(1)nx2n+2wn+1

int ln(1+x^2)/x^w = sum_(n=0)^oo (-1)^n/(n+1) int x^(2n+2-w)dxln(1+x2)xw=n=0(1)nn+1x2n+2wdx

int ln(1+x^2)/x^w = C+sum_(n=0)^oo (-1)^n/(n+1)x^(2n+3-w)/(2n+3-w)ln(1+x2)xw=C+n=0(1)nn+1x2n+3w2n+3w

The series has radius of convergence at least equal to the original series R=1R=1, but has sense only if for every nn:

2n+3-w != 02n+3w0

2n+3 != w2n+3w

thus ww cannot be an odd integer number except for w=1w=1.