No, you don't use half-reactions in the oxidation number method.
Here's how you use the oxidation number to balance the following equation.
#"MnO"_4^(-) + "HSO"_3^(-) → "Mn"^(2+) + "SO"_4^(2-)+ "H"_2"O"#
Step 1. Identify the atoms that change oxidation number
Left hand side: #"Mn" =+7#; #"O" = -2#; #"H" = +1#; #"S" = +4#
Right hand side: #"Mn" = +2#; #"S" = +6#; #"O" = -2#; #"H" = +1#
The changes in oxidation number are:
#"Mn"#: +7 → +2; Change = -5
#"S"#: +4 → +6; Change = +2
Step 2. Equalize the changes in oxidation number
You need 5 atoms of #"S"# for every 2 atoms of #"Mn"#. This gives us total changes of +10 and -10.
Step 3. Insert coefficients to get these numbers
#color(red)(2)"MnO"_4^(-) + color(red)(5)"HSO"_3^(-) → color(red)(2)"Mn"^(2+) + color(red)(5)"SO"_4^(2-)#
Step 4. Balance #"O"# by adding #"H"_2"O"# molecules to the appropriate side
#color(red)(2)"MnO"_4^(-) + color(red)(5)"HSO"_3^(-) → color(red)(2)"Mn"^(2+) + color(red)(5)"SO"_4^(2-)+ color(blue)(3)"H"_2"O"#
Step 5. Balance H by adding H⁺ ions to the appropriate side
#color(red)(2)"MnO"_4^(-) + color(red)(5)"HSO"_3^(-) + color(green)(1)"H"^+ → color(red)(2)"Mn"^(2+) + color(red)(5)"SO"_4^(2-)+ color(blue)(3)"H"_2"O"#
And the equation is balanced.