Is it possible to factor #y= 6x^3-9x+3 #? If so, what are the factors?
1 Answer
Yes:
#y = 6x^3-9x+3#
#=3(x-1)(2x^2+2x-1)#
#= 6(x-1)(x-1/2-sqrt(3)/2)(x-1/2+sqrt(3)/2)#
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this later.
First separate out the common scalar factor
#y = 6x^3-9x+3 = 3(2x^3-3x+1)#
Next note that the sum of the coefficients is zero. That is
#3(2x^3-3x+1) = 3(x-1)(2x^2+2x-1)#
We can factor the remaining quadratic expression by completing the square and using the difference of squares identity...
#(2x^2-2x-1)#
#=2(x^2-x-1/2)#
#=2(x^2-x+1/4-3/4)#
#=2((x-1/2)^2-(sqrt(3)/2)^2)#
#=2((x-1/2)-sqrt(3)/2)((x-1/2)+sqrt(3)/2)#
#=2(x-1/2-sqrt(3)/2)(x-1/2+sqrt(3)/2)#
Putting it all together:
#y = 6x^3-9x+3#
#=3(x-1)(2x^2+2x-1)#
#= 6(x-1)(x-1/2-sqrt(3)/2)(x-1/2+sqrt(3)/2)#