Is it possible to factor #y= x^5+2x^4+x^3+4x^2+5x+2 #? If so, what are the factors?
1 Answer
Yes, but it's a little complicated:
#x^5+2x^4+x^3+4x^2+5x+2#
#= (x+2)(x^4+x^2+2x+1)#
#=(x+2)(x^2+sqrt((sqrt(17)-1)/2)x+((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)#
#*(x^2-sqrt((sqrt(17)-1)/2)x+((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)#
Explanation:
Let
By the rational root theorem, the only possible rational roots of
Trying these we find:
#f(-2) = -32+32-8+16-10+2 = 0#
So
#x^5+2x^4+x^3+4x^2+5x+2 = (x+2)(x^4+x^2+2x+1)#
Next, since the remaining quartic factor has no
#x^4+x^2+2x+1#
#= (x^2+ax+b)(x^2-ax+c)#
#=x^4+(b+c-a^2)x^2+a(c-b)x+bc#
Equating coefficients and rearranging slightly, we get:
#b+c = a^2+1#
#c-b = 2/a#
#bc = 1#
So:
#(a^2 + 1)^2 = (b+c)^2 = (c-b)^2 + 4bc = (2/a)^2 + 4#
That is:
#(a^2)^2+2(a^2)+1 = 4/a^2 + 4#
Multiplying through by
#(a^2)^3+2(a^2)^2-3(a^2)-4 = 0#
One of the solutions to this cubic in
#(a^2)^3+2(a^2)^2-3(a^2)-4 = (a^2+1)((a^2)^2+a^2-4)#
Hence two further roots:
#a^2 = (-1+-sqrt(17))/2#
In particular,
#a = +-sqrt((sqrt(17)-1)/2)#
We can use the positive square root, since the derivation is symmetric.
So, adding
we find:
#2c = a^2+1+2/a#
#=(sqrt(17)-1)/2 + 1 + 2/sqrt((sqrt(17)-1)/2)#
So:
#c = (sqrt(17)-1)/4 + 1/2 + 1/sqrt((sqrt(17)-1)/2)#
#= (sqrt(17)+1)/4 + sqrt((sqrt(17)-1)/2)/((sqrt(17)-1)/2)#
#= (sqrt(17)+1)/4 + (2sqrt((sqrt(17)-1)/2))/(sqrt(17)-1)#
#= (sqrt(17)+1)/4 + (2sqrt((sqrt(17)-1)/2)(sqrt(17)+1))/16#
#= ((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8#
Similarly:
#b = ((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8#
Putting it together:
#x^4+x^2+2x+1#
#=(x^2+sqrt((sqrt(17)-1)/2)x+((2-sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)#
#*(x^2-sqrt((sqrt(17)-1)/2)x+((2+sqrt((sqrt(17)-1)/2))(sqrt(17)+1))/8)#
Ouch!