Given that, e^(f(x))=((10+x)/(10-x)), x in (-10,10).
:. lne^(f(x))=ln((10+x)/(10-x)).
:. f(x)*lne=ln((10+x)/(10-x)),
i.e., f(x)=ln((10+x)/(10-x))..........................(ast_1).#,
or, f(x)=ln(10+x)-ln(10-x).
Plugging in (200x)/(100+x^2) in place of x, we get,
f((200x)/(100+x^2)),
=ln{10+(200x)/(100+x^2)}-ln{10-(200x)/(100+x^2)},
=ln{(1000+10x^2+200x)/(100+x^2)}-ln{(1000+10x^2-200x)/(100+x^2)},
=ln[{10(100+x^2+20x)}/(100+x^2)]-ln[{10(100+x^2-20x)}/(100+x^2)],
=ln[{10(100+x^2+20x)}/(100+x^2)-:{10(100+x^2-20x)}/(100+x^2)],
=ln{(100+x^2+20x)/(100+x^2-20x)},
=ln{((10+x)/(10-x))^2}.
Thus, f((200x)/(100+x^2))=ln{((10+x)/(10-x))^2}...........(ast_2).
Now, utilising (ast_1) and (ast_2) in
f(x)=k*f((200x)/(100+x^2))......................."[Given]", we get,
ln((10+x)/(10-x))=k*ln{((10+x)/(10-x))^2},
i.e., ln((10+x)/(10-x))=ln((10+x)/(10-x))^(2k).
:. 1=2k, or, k=1/2=0.5," which is the option "(1).