It's the 2nd question. Circled up n written as doubt. Can anyone help me get through this?

enter image source here

1 Answer
Jun 17, 2018

Kindly refer to the Explanation.

Explanation:

Given that, e^(f(x))=((10+x)/(10-x)), x in (-10,10).

:. lne^(f(x))=ln((10+x)/(10-x)).

:. f(x)*lne=ln((10+x)/(10-x)),

i.e., f(x)=ln((10+x)/(10-x))..........................(ast_1).#,

or, f(x)=ln(10+x)-ln(10-x).

Plugging in (200x)/(100+x^2) in place of x, we get,

f((200x)/(100+x^2)),

=ln{10+(200x)/(100+x^2)}-ln{10-(200x)/(100+x^2)},

=ln{(1000+10x^2+200x)/(100+x^2)}-ln{(1000+10x^2-200x)/(100+x^2)},

=ln[{10(100+x^2+20x)}/(100+x^2)]-ln[{10(100+x^2-20x)}/(100+x^2)],

=ln[{10(100+x^2+20x)}/(100+x^2)-:{10(100+x^2-20x)}/(100+x^2)],

=ln{(100+x^2+20x)/(100+x^2-20x)},

=ln{((10+x)/(10-x))^2}.

Thus, f((200x)/(100+x^2))=ln{((10+x)/(10-x))^2}...........(ast_2).

Now, utilising (ast_1) and (ast_2) in

f(x)=k*f((200x)/(100+x^2))......................."[Given]", we get,

ln((10+x)/(10-x))=k*ln{((10+x)/(10-x))^2},

i.e., ln((10+x)/(10-x))=ln((10+x)/(10-x))^(2k).

:. 1=2k, or, k=1/2=0.5," which is the option "(1).