Prove Euclid's right traingle Theorem 1 and 2: #ET_1 =>\overline{BC}^{2} = \overline{AC}*\overline{CH};# #ET'_1 =>bar(AB)^{2} =bar(AC)*bar(AH)#; #ET_2 =>barAH^{2} = \overline{AH}*\overline{CH}#? ![enter image source here](https
Prove Euclid's right traingle Theorem 1 and 2: #ET_1 =>\overline{BC}^{2} = \overline{AC}*\overline{CH};#
#ET'_1 =>\overline{AB}^{2} = \overline{AC}*\overline{AH}#
#ET_2 =>\overline{AH}^{2} = \overline{AH}*\overline{CH}# ?
Prove Euclid's right traingle Theorem 1 and 2:
1 Answer
See the Proof in The Explanation Section.
Explanation:
Let us observe that, in
Accordingly, their corresponding sides are proportional.
This proves
To prove
similar.
In
Also,
Comparing
Thus, in
From the
This proves