Solve the following equation...? 2^(4x) - 5(2^(2x - 1/2)) + 2 = 0

1 Answer

x=ln((25+-sqrt(609))/(2sqrt(2)))/(ln4)

Explanation:

2^(4x)-5(2^(2x-1/2))+2=0<=>

2^((2x)^2)-5*2^(2x)color(red)(xx)5*2^(-1/2)+2=0<=>

(2^(2x))^2-(25/sqrt(2))2^(2x)+2=0<=>

Now the quadratic equation should be easy to see.
You have to replace 2^(2x) with an y.

<=> y^2−(25/(√2))y+2=0

y=(25/sqrt(2)+-sqrt(625/2-2*2*2))/2

y=(25/sqrt(2)+-sqrt(609/2))/2

2^(2x)=y=(25/sqrt(2)+-sqrt(609/2))/2

Appyling logarithms:

2xln2=ln((25+-sqrt(609))/(2sqrt(2)))

x=ln((25+-sqrt(609))/(2sqrt(2)))/(2ln2)

x=ln((25+-sqrt(609))/(2sqrt(2)))/(ln4)