Solve the following equation in natural numbers : x²+y²=1997(x-y) ?
1 Answer
Explanation:
The following proof is based on that in the book "An Introduction to Diophantine Equations: A Problem-Based Approach" by Titu Andreescu, Dorin Andrica, Ion Cucurezeanu.
Given:
x^2+y^2=1997(x-y)
Let
Then:
a^2+b^2 = (x+y)^2+(1997-x+y)^2
=x^2+2xy+y^2+1997^2+x^2+y^2-2(1997(x-y)+xy)
=x^2+2xy+y^2+1997^2+x^2+y^2-2(x^2+y^2+xy)
=1997^2
Hence we find:
{(0 < a = x+y < 1997), (0 < b = 1997-x+y < 1997) :}
Since
Hence there exist positive integers
{ (1997 = m^2+n^2), (a=2mn), (b=m^2-n^2) :} color(white)(XX)"or"color(white)(XX){ (1997 = m^2+n^2), (a=m^2-n^2), (b=2mn) :}
Looking at
2 -= 1997 = m^2+n^2 (mod3 ) hencem -= +-1 andn -= +-1 (mod3 )
2 -= 1997 = m^2+n^2 (mod5 ) hencem -= +-1 andn -= +-1 (mod5 )
That means that the only possibilities for
In addition note that:
m^2 in (1997/2, 1997)
Hence:
m in (sqrt(1997/2), sqrt(1997)) ~~ (31.6, 44.7)
So the only possibilities for
We find:
1997 - 34^2 = 841 = 29^2
1997 - 41^2 = 316 not a perfect square.
1997 - 44^2 = 61 not a perfect square.
So
So:
(a, b) = (2mn, m^2-n^2) = (1972, 315)
or
(a, b) = (m^2-n^2, 2mn) = (315, 1972)
If
{(x+y=1972), (1997-x+y=315):}
and hence:
(x, y) = (1817, 145)
If
{(x+y=315), (1997-x+y=1972):}
and hence:
(x, y) = (170, 145)