The base of a triangular pyramid is a triangle with corners at #(2 ,6 )#, #(5 ,3 )#, and #(8 ,7 )#. If the pyramid has a height of #18 #, what is the pyramid's volume?

1 Answer
Mar 24, 2016

#V_(pyr)=1/3 (10.5)*18=10.5*6=63 " cubic units"#

enter image source here

Explanation:

Given the vertices of the base triangle of a pyramid and altitude:
#A(2,6), B(5,3) and C(8,7)#
Altitude, #H=18# units
Required: The volume?
This problem can be solved as follows:
#V_(pyr)=1/3 (BA)*H# where #BA= #Base Area and #H= #Altitude
So the strategy is:
a) Use distance formula to determine the length of sides of the triangle: #bar(AB),bar(BC), bar(CA),#
Distance formula of, #P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)#
#bar(P_1P_2)= sqrt((x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2 )#
Since the base is on the x-y plane #z_1=z_2=0# Thus,
#bar(AB) = sqrt((2-5)^2 + (6-3)^2)=3sqrt(2)#
#bar(BC)=sqrt((5-8)^2 + (3-7)^2)=5#
#bar(CA)=sqrt((8-2)^2 + (7-6)^2)=sqrt(37)#
b) Now calculate the area. Since you know all sides you can use Heron's formula:
#Area_(Delta) =A_Delta= sqrt(s(s-a)(s-b)(s-c))#
where #a, b, and d# are sides of base triangle and s is half the perimeter #s=1/2 (a+b+c)= 1/2 (5+3sqrt(2)+sqrt(37)) #
#A_Delta=sqrt(1/2 (5+3sqrt(2)+sqrt(37))[1/2 (5+3sqrt(2)+sqrt(37)) -5 ] [1/2 (5+3sqrt(2)+sqrt(37)) -3sqrt(2) ][1/2 (5+3sqrt(2)+sqrt(37)) -sqrt(37) ] )~~10.5# #A_Delta=10.5 " square units"#
b) Now calculate the volume. : #V_(pyr)=1/3 (BA)*H#
#V_(pyr)=1/3 (10.5)*18=10.5*6=63 " cubic units"#