The solubility product constant for "Mg(OH)"_2Mg(OH)2 is 1.8 × 10^"-11"1.8×10-11. What would be the solubility of "Mg(OH)"_2Mg(OH)2 in 0.345 M "NaOH"NaOH?

The solubility product constant for "Mg(OH)"_2Mg(OH)2 is 1.8 × 10^"-11"1.8×10-11. What would be the solubility of "Mg(OH)"_2Mg(OH)2 in 0.345 M "NaOH"NaOH?

1 Answer
Jun 3, 2016

The solubility would be 1.5 × 10^"-10"color(white)(l) "mol/L"1.5×10-10lmol/L.

Explanation:

Set up the chemical equation for the equilibrium:

color(white)(mmmmmm)"Mg(OH)"_2"(s)" ⇌ "Mg"^(2+)"(aq)" + 2"OH"^"-""(aq)"mmmmmmMg(OH)2(s)Mg2+(aq)+2OH-(aq)
"E:/mol·L"^"-1" color(white)(mmmmmmmmmm)x color(white)(mmmm)0.345 + 2xE:/mol⋅L-1mmmmmmmmmmxmmmm0.345+2x

Set up the solubility product expression:

K_"sp" = ["Mg"^(2+)]["OH"^"-"]^2 = x(0.345 +2x)^2 = 1.8 × 10^"-11"Ksp=[Mg2+][OH-]2=x(0.345+2x)2=1.8×10-11

Check that 2xcolor(white)(l) "<< 0.345"2xl<< 0.345

0.345/(1.8 × 10^"-11") = 1.9 × 10^10 > 4000.3451.8×10-11=1.9×1010>400. ∴ 2xcolor(white)(l) "<< 0.345"2xl<< 0.345,

Solve the K_"sp"Ksp expression:

x(0.345)^2 = 1.8 × 10^"-11"x(0.345)2=1.8×10-11

0.119x = 1.8 × 10^"-11"0.119x=1.8×10-11

x = (1.8 × 10^"-11")/0.119 = 1.5 × 10^"-10"x=1.8×10-110.119=1.5×10-10

∴ Solubility of "Mg(OH)"_2 = 1.5 × 10^"-10" color(white)(l) "mol/L"Mg(OH)2=1.5×10-10lmol/L