First, let's call Albert's age: #a#. And, let's call Bob's age: #b#
Now, we can write:
#2a + b = 75#
#(a + 3) + (b + 3) = 64# or #a + b + 6 = 64#
Step 1) Solve the first equation for #b#:
#-color(red)(2a) + 2a + b = -color(red)(2a) + 75#
#0 + b = -2a + 75#
#b = -2a + 75#
Step 2) Substitute #(-2a + 75)# for #b# in the second equation and solve for #a#:
#a + b + 6 = 54# becomes:
#a + (-2a + 75) + 6 = 64#
#a - 2a + 75 + 6 = 64#
#1a - 2a + 75 + 6 = 64#
#(1 - 2)a + 81 = 64#
#-1a + 81 = 64#
#-a + 81 - color(red)(81) = 64 - color(red)(81)#
#-a + 0 = -17#
#-a = -17#
#color(red)(-1) * -a = color(red)(-1) * -17#
#a = 17#
Step 3) Substitute #17# for #a# in the solution to the first equation at the end of Step 1 and calculate #b#:
#b = -2a + 75# becomes:
#b = (-2 * 17) + 75#
#b = -34 + 75#
#b = 41#
The solution is:
Albert is 17 and Bob is 41