How do you Use implicit differentiation to find the equation of the tangent line to the curve x^3+y^3=9x3+y3=9 at the point where x=-1x=1 ?

1 Answer
Sep 26, 2014

We begin this problem by finding the point of tangency.

Substitute in the value of 1 for xx.

x^3+y^3=9x3+y3=9
(1)^3+y^3=9(1)3+y3=9
1+y^3=91+y3=9
y^3=8y3=8

Not sure how to show a cubed root using our math notation here on Socratic but remember that raising a quantity to the 1/313 power is equivalent.

Raise both sides to the 1/313 power

(y^3)^(1/3)=8^(1/3)(y3)13=813

y^(3*1/3)=8^(1/3)y313=813

y^(3/3)=8^(1/3)y33=813

y^(1)=8^(1/3)y1=813

y=(2^3)^(1/3)y=(23)13

y=2^(3*1/3)y=2313

y=2^(3/3)y=233

y=2^(1)y=21

y=2y=2

We just found that when x=1, y=2x=1,y=2

Complete the Implicit Differentiation

3x^2+3y^2(dy/dx)=03x2+3y2(dydx)=0

Substitute in those x and yxandy values from above =>(1,2)(1,2)

3(1)^2+3(2)^2(dy/dx)=03(1)2+3(2)2(dydx)=0

3+3*4(dy/dx)=03+34(dydx)=0

3+12(dy/dx)=03+12(dydx)=0

12(dy/dx)=-312(dydx)=3

(12(dy/dx))/12=(-3)/1212(dydx)12=312

(dy)/dx=(-1)/4=-0.25 => Slope = mdydx=14=0.25Slope=m

Now use the slope intercept formula, y=mx+by=mx+b

We have (x,y) => (1,2)(x,y)(1,2)

We have m = -0.25m=0.25

Make the substitutions

y=mx+by=mx+b

2 = -0.25(1)+b2=0.25(1)+b

2 = -0.25+b2=0.25+b

0.25 + 2=b0.25+2=b

2.25=b2.25=b

Equation of the tangent line ...

y=-0.25x+2.25y=0.25x+2.25

To get a visual with the calculator solve the original equation for yy.

y=(9-x^3)^(1/3)y=(9x3)13