Verify the following limit?

Use the epsilon − delta definition of a limit to verify the following limit:

lim_(x→3) (x)/(6-x)= 1

1 Answer
Feb 27, 2018

Evaluate the difference:

abs(x/(6-x)-1) = abs ( ( x-6+x)/(6-x)) = abs ((2x-6)/(6-x)) = 2 abs (x-3)/abs(x-6)

Given now epsilon > 0 choose delta_epsilon < min(1,epsilon)

For x in (3-delta_epsilon,3+delta_epsilon) then we have:

abs (x-3) < delta_epsilon

3-delta_epsilon < abs(x-6) < 3+delta_epsilon

then as delta_epsilon < 1

abs(x-6) > 2

So for x in (3-delta_epsilon,3+delta_epsilon):

abs(x/(6-x)-1) < (2delta_epsilon)/ 2

abs(x/(6-x)-1) < delta_epsilon

and as delta_epsilon < epsilon:

x in (3-delta_epsilon,3+delta_epsilon) => abs(x/(6-x)-1) < epsilon

which proves the limit.