What are possible values of x if lne^(2x)/2<4ln(e^(3x))+5??

1 Answer
May 22, 2016

x > -5/11

Explanation:

(log_e(e^{2x}))/2=log_e(e^{2x})^{1/2} = log_e(e^x)
4 log_e(e^{3x}))=log_e(e^{3x})^4=log_e(e^{12x})
then
(log_e(e^{2x}))/2-4 log_e(e^{3x})=log_e((e^x)/(e^{12x})) = log_e(e^{x-12x}) = log_e(e^{-11x}) following
log_e(e^{-11x}) < log_e(e^5) and
log_e(e^{-11x-5})< log_e(1) = 0
Finally
e^{-11x-5}<1->-11x-5<0->x > -5/11