What are the components of the vector between the origin and the polar coordinate #(9, (4pi)/3)#?

1 Answer
Aug 16, 2017

#((-9/2),(-9/2sqrt3))#

Explanation:

#"to convert from "color(blue)"polar to cartesian form"#

#"that is "(r,theta)to(x,y)" using"#

#•color(white)(x)x=rcosthetacolor(white)(x);y=rsintheta"#

#"here "r=9" and "theta=(4pi)/3#

#•color(white)(x)cos((4pi)/3)=-cos(pi/3)color(white)(x);sin((4pi)/3)=-sin(pi/3)#

#rArrx=9cos((4pi)/3)=-9cos(pi/3)=-9xx1/2=-9/2#

#y=9sin((4pi)/3)=-9sin(pi/3)=-9xxsqrt3/2=-9/2sqrt3#

#rArr(9,(4pi)/3)to(-9/2,-9/2sqrt3)to((-9/2),(-9/2sqrt3))#