What are the extrema of f(x) = e^x(x^2+2x+1)?

1 Answer
Apr 5, 2016

x=-3 or x = -1

Explanation:

f=e^x, g=x^2+2x+1

f'=e^x, g'=2x+2

f'(x)=fg'+gf'=e^x (2x+2)+e^x (x^2+2x+1)=0

e^x (2x+2+x^2+2x+1)=0

e^x (x^2+4x+3)=0

e^x(x+3)(x+1)=0

e^x = 0 or x+3=0 or x+1 =0

not possible, x=-3 or x = -1

f(-3)=e^-3(9-6+1)=0.199->max

f(-1)=e^-1(1-2+1) = 0->min