What are the first three derivatives of (xcos(x)-sin(x))/(x^2)?

1 Answer
Mar 12, 2015

The answer is:

y''=(-x^3cosx+3x^4sinx+6xcosx-6sinx)/x^4.

This is why:

y'=(((cosx+x*(-sinx)-cosx)x^2-(xcosx-sinx)*2x))/x^4=

=(-x^3sinx-2x^2cosx+2xsinx)/x^4=

=(-x^2sinx-2xcosx+2sinx)/x^3

y''=((-2xsinx-x^2cosx-2cosx-2x(-sinx)+2cosx)x^3-(-x^2sinx-2xcosx+2sinx)*3x^2)/x^6=

=((-x^2cosx)x^3+3x^4sinx+6x^3cosx-6x^2sinx)/x^6=

=(-x^3cosx+3x^4sinx+6xcosx-6sinx)/x^4.