What are the global and local extrema of f(x)=x^3-x^2-xf(x)=x3−x2−x ?
1 Answer
Aug 31, 2016
There is a maxima at
There is a minima at
Explanation:
Given -
y=x^3-x^2-xy=x3−x2−x
dy/dx=3x^2-2x-1dydx=3x2−2x−1
(d^2y)/(dx^2)=6x-2d2ydx2=6x−2
Set the first derivative equal to zero
dy/dx=0 =>3x^2-2x-1=0dydx=0⇒3x2−2x−1=0
3x^2-3x+x-1=03x2−3x+x−1=0
3x(x-1)+1(x-1)=03x(x−1)+1(x−1)=0
(3x+1)(x-1)=0(3x+1)(x−1)=0
3x=-13x=−1
x=-1/3x=−13
x-1=0x−1=0
x=1x=1
At
(d^2y)/(dx^2)=6(-1/3)-2=-2-2=-4<0d2ydx2=6(−13)−2=−2−2=−4<0
There is a maxima at
(d^2y)/(dx^2)=6(1)-2=6-2=4>0d2ydx2=6(1)−2=6−2=4>0
There is a minima at