What are the global and local extrema of f(x)=x^3-x^2-xf(x)=x3x2x ?

1 Answer
Aug 31, 2016

There is a maxima at x=-1/3x=13
There is a minima at x=1x=1

Explanation:

Given -

y=x^3-x^2-xy=x3x2x
dy/dx=3x^2-2x-1dydx=3x22x1
(d^2y)/(dx^2)=6x-2d2ydx2=6x2

Set the first derivative equal to zero

dy/dx=0 =>3x^2-2x-1=0dydx=03x22x1=0

3x^2-3x+x-1=03x23x+x1=0

3x(x-1)+1(x-1)=03x(x1)+1(x1)=0
(3x+1)(x-1)=0(3x+1)(x1)=0
3x=-13x=1
x=-1/3x=13
x-1=0x1=0
x=1x=1

At x=-1/3x=13

(d^2y)/(dx^2)=6(-1/3)-2=-2-2=-4<0d2ydx2=6(13)2=22=4<0

There is a maxima at x=-1/3x=13

(d^2y)/(dx^2)=6(1)-2=6-2=4>0d2ydx2=6(1)2=62=4>0

There is a minima at x=1x=1

Look at the graph