What are the important information needed to graph y=tan(x2)+1?

1 Answer
Feb 8, 2017

Lots of stuff(s) :D

Explanation:

graph{tan(x/2)+1 [-4, 4, -5, 5]}

To get the graph above, you need a couple of things.

The constant, +1 represents how much the graph is raised. Compare to the graph below of y=tan(x2) without the constant.

graph{tan(x/2) [-4, 4, -5, 5]}

After finding the constant, you can find the period, which are the lengths at which the function repeats itself. tan(x) has a period of π, so tan(x2) has a period of 2π (because the angle is divided by two inside the equation)

Depending on your teacher's requirements, you may need to plug in a certain number of points to complete your graph. Remember that tan(x) is undefined when cos(x)=0 and is zero when sin(x)=0 because tan(x)=sin(x)cos(x)