This is the vertex form of the standardised" " y=ax^2+bx+c
Multiplying out the brackets the we have " "y=3x^2+18x+24
As the 3x^2 is positive the graph is of general shape uu
color(blue)("Determine the vertex using the questions equation format")
Given:" "y=3(xcolor(red)(+3))^2color(green)(-3)
x_("vertex")=(-1)xxcolor(red)((+3)) = -3
y_("vertex")=color(green)(-3)
Vertex->(x,y)=(-3,-3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the x-intercepts")
set y=0
=>0=3(x+3)^2-3
3=3(x+3)^2
(x+3)^2=1
x+3=+-sqrt((1)
x=-3+-1
x=-4 and -2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine y-intercept")
Set x=0
y= 3(0+3)^2-3
y=27-3=24
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Foot note")
Using the format y=3x^2+18x+24
x_("vertex")=(-1/2)xx(18/3)=-3