What are the important points needed to graph y=3(x+3)^2 - 3?

1 Answer
Mar 20, 2017

y_("intercept")=24
x_("intercepts")=-4 and -2
Vertex ->(x,y)=(-3,-3)

Explanation:

This is the vertex form of the standardised" " y=ax^2+bx+c
Multiplying out the brackets the we have " "y=3x^2+18x+24

As the 3x^2 is positive the graph is of general shape uu

color(blue)("Determine the vertex using the questions equation format")

Given:" "y=3(xcolor(red)(+3))^2color(green)(-3)

x_("vertex")=(-1)xxcolor(red)((+3)) = -3
y_("vertex")=color(green)(-3)

Vertex->(x,y)=(-3,-3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Determine the x-intercepts")

set y=0

=>0=3(x+3)^2-3

3=3(x+3)^2

(x+3)^2=1

x+3=+-sqrt((1)

x=-3+-1

x=-4 and -2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine y-intercept")

Set x=0

y= 3(0+3)^2-3

y=27-3=24

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Foot note")

Using the format y=3x^2+18x+24

x_("vertex")=(-1/2)xx(18/3)=-3

Tony B