What are the local extrema, if any, of f (x) =(x^3+3x^2)/(x^2-5x)f(x)=x3+3x2x25x?

1 Answer
Jun 3, 2018

MIN(5+2sqrt(10),4sqrt(10)+13)MIN(5+210,410+13) and MAX(5-2*sqrt(10),-4sqrt(10)+13)MAX(5210,410+13)

Explanation:

By the Quotient rule we get

f'(x)=((3x^2+6x)(x^2-5x)-(x^3+3x^2)(2x-5))/(x^2-5x)^2
simplifying we obtain

f'(x)=(x^2-10x-15)/(x-5)^2

f''(x)=80/(x-5)^3

so we have

f''(5+2*sqrt(10))=80/(2sqrt(10))^3>0

f''(5-2sqrt(10))=80/(-2sqrt(10))^3<0