What are the local extrema, if any, of f (x) =(xlnx)^2/x?

1 Answer
Jul 21, 2017

f_min =f(1) =0
f_max =f(e^(-2)) approx 0.541

Explanation:

f(x) = (xlnx)^2/x

= (x^2*(lnx)^2)/x

= x(lnx)^2

Applying the product rule

f'(x) = x*2lnx*1/x + (lnx)^2*1

= (lnx)^2 + 2lnx

For local maxima or minima: f'(x) = 0

Let z= lnx

:. z^2 +2z = 0

z(z+2) =0 -> z=0 or z=-2

Hence for local maximum or minimum:

lnx = 0 or lnx = -2

:.x= 1 or x=e^-2 approx 0.135

Now examine the graph of x(lnx)^2 below.

graph{x(lnx)^2 [-2.566, 5.23, -1.028, 2.87]}

We can observe that simplified f(x) has a local minimum at x=1 and a local maximum at x in (0, 0.25)

Hence: f_min =f(1) =0 and f_max =f(e^(-2)) approx 0.541