What are the Special Products of Polynomials?
1 Answer
Jan 5, 2015
The general form for multiplying two binomials is:
Special products:
-
the two numbers are equal, so it's a square:
(x+a)(x+a)=(x+a)^2=x^2+2ax+a^2(x+a)(x+a)=(x+a)2=x2+2ax+a2 , or
(x-a)(x-a)=(x-a)^2=x^2-2ax+a^2(x−a)(x−a)=(x−a)2=x2−2ax+a2
Example :(x+1)^2=x^2+2x+1(x+1)2=x2+2x+1
Or:51^2=(50+1)^2=50^2+2*50+1=2601512=(50+1)2=502+2⋅50+1=2601 -
the two numbers are equal, and opposite sign:
(x+a)(x-a)=x^2-a^2(x+a)(x−a)=x2−a2
Example :(x+1)(x-1)=x^2-1(x+1)(x−1)=x2−1
Or:51*49=(50+1)(50-1)=50^2-1=249951⋅49=(50+1)(50−1)=502−1=2499