What are the zeros -2x^2-15x+y+22=0?

1 Answer
May 21, 2018

x=(-15+sqrt401)/4, (-15-sqrt401)/4

Explanation:

Given:

-2x^2-15x+y+22=0

Subtract y from both sides.

-2x^2-15x+22=-y

Multiply both sides by -1. This will reverse the signs.

2x^2+15x-22=y

Switch sides.

y=2x^2+15x-22

This is a quadratic equation in standard form:

y=ax^2+bx+c,

where:

a=2, b=15, c=-22

The roots are the x-intercepts, which are the values for x when y=0.

Substitute 0 for y.

0=2x^2+15x-22

Solve for x using the quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)

Plug the known values into the equation.

x=(-15+-sqrt(15^2-4*2*-22))/(2*2)

x=(-15+-sqrt(401))/4 larr 401 is a prime number

Roots

x=(-15+sqrt401)/4, (-15-sqrt401)/4

Approximate roots

x~~2.56, -8.756

graph{y=2x^2+15x-22 [-11.09, 11.41, -8.775, 2.475]}