What does -2cos(arctan(6))+csc(arcsec(2)) equal?

1 Answer
Dec 18, 2015

-2cos(arctan(6))+csc("arcsec"(2))

=-2/sqrt(37)+2/sqrt(3)

=(-6sqrt(37)+74sqrt(3))/111

Explanation:

arctan(6) is one of the angles in a right angled triangle with legs of length 1, 6 and hypotenuse sqrt(1^2+6^2) = sqrt(37)

Hence cos(arctan(6)) = 1/sqrt(37)

"arcsec"(2) is one of the angles in a right angled triangle with legs of length 1, sqrt(2^2-1^2) = sqrt(3) and hypotenuse 2.

Hence csc("arcsec"(2)) = 2/sqrt(3)

So:

-2cos(arctan(6))+csc("arcsec"(2))

=-2/sqrt(37)+2/sqrt(3)

=-(2sqrt(37))/37+(2sqrt(3))/3

=(-6sqrt(37)+74sqrt(3))/111