What does cos(arctan((3pi)/2))-2sin(arcsec(pi/4)) equal?

1 Answer
Jan 21, 2016

2/sqrt(9pi^2+4)-2*sqrt(pi^2-16)/pi

Explanation:

If we make arctan((3pi)/2)=theta then
tan theta=(3pi)/2 => sin theta/cos theta =(3pi)/2 => sqrt(1-cos^2 theta)=(3pi)/2*cos theta =>1-cos^2 theta=(9pi^2)/4 => cos^2 theta*(9pi^2+4)/4=1 => cos theta=2/sqrt(9pi^2+4) => theta = arccos (2/sqrt(9pi^2+4))

If we make arcsec(pi/4)=phi then
sec phi =pi/4 => cos phi=4/pi
sin phi=sqrt(1-cos^2 phi)=sqrt(1-16/pi^2) => sin phi=sqrt(pi^2-16)/pi => phi=arcsin(sqrt(pi^2-16)/pi)

Using the results in the original expression
cos theta-2sin phi=
cos (arccos(2/sqrt(9pi^2+4)))-2*sin (arcsin(sqrt(pi^2-16)/pi))=
=2/sqrt(9pi^2+4)-2*sqrt(pi^2-16)/pi