What does sin(arccos(6))-csc(arccos(12)) equal?

1 Answer
Dec 12, 2015

sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i

Explanation:

The range of cos(x) is [-1, 1], so with cos as a Real function, arccos(6) and arccos(12) are undefined.

However, it is possible to define Complex valued functions of Complex numbers, cos(z) and sin(z) using the identities:

e^(iz) = cos z + i sin z

cos(-z) = cos(z)

sin(-z) = -sin(z)

to find:

cos(z) = (e^(iz)+e^(-iz))/2

sin(z) = (e^(iz)-e^(-iz))/(2i)

We find:

cos^2 z + sin^2 z

=(e^(iz)+e^(-iz))^2/4 + (e^(iz)-e^(-iz))^2/(2i)^2

=((e^(iz)+e^(-iz))^2 - (e^(iz)-e^(-iz))^2)/4

=4/4 = 1

So the identity cos^2 z + sin^2 z = 1 still works.

Hence:

sin(arccos(6)) = sqrt(1-6^2) = sqrt(-35) = sqrt(35) i

csc(arccos(12)) = 1/sin(arccos(12)) = 1/sqrt(1-12^2) = 1/sqrt(-143) = 1/(isqrt(143)) = -sqrt(143)/143 i

So:

sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i