What does sin(arccos(6))-csc(arccos(12)) equal?
1 Answer
sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i
Explanation:
The range of
However, it is possible to define Complex valued functions of Complex numbers,
e^(iz) = cos z + i sin z
cos(-z) = cos(z)
sin(-z) = -sin(z)
to find:
cos(z) = (e^(iz)+e^(-iz))/2
sin(z) = (e^(iz)-e^(-iz))/(2i)
We find:
cos^2 z + sin^2 z
=(e^(iz)+e^(-iz))^2/4 + (e^(iz)-e^(-iz))^2/(2i)^2
=((e^(iz)+e^(-iz))^2 - (e^(iz)-e^(-iz))^2)/4
=4/4 = 1
So the identity
Hence:
sin(arccos(6)) = sqrt(1-6^2) = sqrt(-35) = sqrt(35) i
csc(arccos(12)) = 1/sin(arccos(12)) = 1/sqrt(1-12^2) = 1/sqrt(-143) = 1/(isqrt(143)) = -sqrt(143)/143 i
So:
sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i