What does #sqrt(3+7i)*(12+5i)^2# equal in a+bi form?
2 Answers
Explanation:
Let
Therefore
and
i.e.
and similarly
and
As
=
=
Hence
#= (60 sqrt(2sqrt(58)-6) + 119/2 sqrt(2sqrt(58)+6))+(60 sqrt(2sqrt(58)+6) - 119/2 sqrt(2sqrt(58)-6))i#
Explanation:
Note that:
#abs(3+7i) = sqrt(3^2+7^2) = sqrt(9+49) = sqrt(58)#
Since this is not a whole number, the square root of
Note that:
-
#3+7i# is in Q1, so it has principal square root in Q1 and non-principal square root in Q3. -
Its complex conjugate
#3-7i# is in Q4 with square roots in Q4 and Q2.
Note that if:
#x = sqrt(3+7i)#
Then:
#x^2 = 3+7i#
and:
#(x^2-3)^2 = (7i)^2 = -49#
So
#0 = (x^2-3)^2+49#
#color(white)(0) = x^4-6x^2+9+49#
#color(white)(0) = x^4-6x^2+58#
Note that:
#(x^2-kx+sqrt(58))(x^2+kx+sqrt(58)) = x^4+(2sqrt(58)-k^2)x^2+58#
Equating coefficients:
#-6 = 2sqrt(58)-k^2#
Hence:
#k^2 = 2sqrt(58)+6#
So:
#k = +-sqrt(2sqrt(58)+6)#
Thus
#(x^2-sqrt(2sqrt(58)+6)x+sqrt(58))(x^2+sqrt(2sqrt(58)+6)x+sqrt(58))#
In order for the real part to be positive, we need the first of these two quadratics to be
So using the quadratic formula with
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (sqrt(2sqrt(58)+6)+-sqrt((2sqrt(58)+6)-4sqrt(58)))/2#
#color(white)(x) = sqrt(2sqrt(58)+6)/2+-sqrt(2sqrt(58)-6)/2i#
In order for the imaginary part to have poositive coefficient, we need the
The other factor is a little simpler:
#(12+5i)^2 = (12^2-5^2)+2(12)(5)i#
#color(white)((12+5i)^2) = (144-25)+120i#
#color(white)((12+5i)^2) = 119+120i#
So:
#sqrt(3+7i)(12+5i)^2#
#= (sqrt(2sqrt(58)+6)/2+sqrt(2sqrt(58)-6)/2i)(119+120i)#
#= (60 sqrt(2sqrt(58)-6) + 119/2 sqrt(2sqrt(58)+6))+(60 sqrt(2sqrt(58)+6) - 119/2 sqrt(2sqrt(58)-6))i#