First, we can write:
x = 0.bar123x=0.¯¯¯¯¯¯123
Next, we can multiply each side by 10001000 giving:
1000x = 123.bar1231000x=123.¯¯¯¯¯¯123
Then we can subtract each side of the first equation from each side of the second equation giving:
1000x - x = 123.bar123 - 0.bar1231000x−x=123.¯¯¯¯¯¯123−0.¯¯¯¯¯¯123
We can now solve for xx as follows:
1000x - 1x = (123 + 0.bar123) - 0.bar1231000x−1x=(123+0.¯¯¯¯¯¯123)−0.¯¯¯¯¯¯123
(1000 - 1)x = 123 + 0.bar123 - 0.bar123(1000−1)x=123+0.¯¯¯¯¯¯123−0.¯¯¯¯¯¯123
999x = 123 + (0.bar123 - 0.bar123)999x=123+(0.¯¯¯¯¯¯123−0.¯¯¯¯¯¯123)
999x = 123 + 0999x=123+0
999x = 123999x=123
(999x)/color(red)(999) = 123/color(red)(999)999x999=123999
(color(red)(cancel(color(black)(999)))x)/cancel(color(red)(999)) = (3 xx 41)/color(red)(3 xx 333)
x = (color(red)(cancel(color(black)(3))) xx 41)/color(red)(color(black)(cancel(color(red)(3))) xx 333)
x = 41/333