What is .123 (repeating) as a fraction?

1 Answer
Apr 12, 2018

See a solution process below:

Explanation:

First, we can write:

x = 0.bar123x=0.¯¯¯¯¯¯123

Next, we can multiply each side by 10001000 giving:

1000x = 123.bar1231000x=123.¯¯¯¯¯¯123

Then we can subtract each side of the first equation from each side of the second equation giving:

1000x - x = 123.bar123 - 0.bar1231000xx=123.¯¯¯¯¯¯1230.¯¯¯¯¯¯123

We can now solve for xx as follows:

1000x - 1x = (123 + 0.bar123) - 0.bar1231000x1x=(123+0.¯¯¯¯¯¯123)0.¯¯¯¯¯¯123

(1000 - 1)x = 123 + 0.bar123 - 0.bar123(10001)x=123+0.¯¯¯¯¯¯1230.¯¯¯¯¯¯123

999x = 123 + (0.bar123 - 0.bar123)999x=123+(0.¯¯¯¯¯¯1230.¯¯¯¯¯¯123)

999x = 123 + 0999x=123+0

999x = 123999x=123

(999x)/color(red)(999) = 123/color(red)(999)999x999=123999

(color(red)(cancel(color(black)(999)))x)/cancel(color(red)(999)) = (3 xx 41)/color(red)(3 xx 333)

x = (color(red)(cancel(color(black)(3))) xx 41)/color(red)(color(black)(cancel(color(red)(3))) xx 333)

x = 41/333