LHS=cos^2(pi/7)+cos^2(2pi/7)+cos^2(4pi/7)
using formula cos^2theta=1/2(1+cos2theta)
=1/2(1+cos(2pi/7))+1/2(1+cos(4pi/7))+ 1/2(1+cos(8pi/7))
=3/2+1/2(cos(2pi/7)+cos(4pi/7)+cos(8pi/7))
=3/2+1/(4sin(pi/7)) (2sin(pi/7)cos(2pi/7)+2sin(pi/7)cos(4pi/7)+2sin(pi/7)cos(8pi/7))
=3/2+1/(4sin(pi/7)) (cancel(sin(3pi/7))-sin(pi/7)+sin(5pi/7)-cancel(sin(3pi/7))+sin(9pi/7)-sin(7pi/7))
=3/2+1/(4sin(pi/7)) (-sin(pi/7)+sin(pi-2pi/7)+sin(pi+2pi/7)-0)
=3/2+1/(4sin(pi/7)) (-sin(pi/7)+cancel(sin(2pi/7))-cancel(sin(2pi/7)))
=3/2+1/(4cancel(sin(pi/7))) (-cancel(sin(pi/7)))
=3/2-1/4=(6-1)/4=5/4