What is Cos(arcsin(-5/13)+arccos(12/13))cos(arcsin(513)+arccos(1213))?

1 Answer
Jul 21, 2015

=1=1

Explanation:

First you want to let alpha=arcsin(-5/13)α=arcsin(513) and beta=arccos(12/13)β=arccos(1213)

So now we are looking for color(red)cos(alpha+beta)!cos(α+β)!

=>sin(alpha)=-5/13" "sin(α)=513 and " "cos(beta)=12/13 cos(β)=1213

Recall : cos^2(alpha)=1-sin^2(alpha)=>cos(alpha)=sqrt(1-sin^2(alpha))cos2(α)=1sin2(α)cos(α)=1sin2(α)

=>cos(alpha)=sqrt(1-(-5/13)^2)=sqrt((169-25)/169)=sqrt(144/169)=12/13cos(α)=1(513)2=16925169=144169=1213

Similarly, cos(beta)=12/13cos(β)=1213

=>sin(beta)=sqrt(1-cos^2(beta))=sqrt(1-(12/13)^2)=sqrt((169-144)/169)=sqrt(25/169)=5/13sin(β)=1cos2(β)=1(1213)2=169144169=25169=513

=>cos(alpha+beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)cos(α+β)=cos(α)cos(β)sin(α)sin(β)

Then substitue all the values obtained ealier.

=>cos(alpha+beta)=12/13*12/13-(-5/13)*5/13=144/169+25/169=169/169=color(blue)1cos(α+β)=12131213(513)513=144169+25169=169169=1