What is costheta-tantheta*sectheta cosθtanθsecθ in terms of sintheta sinθ?

1 Answer
Jan 9, 2016

=((1-sin^2(theta))sqrt(1-sin^2(theta)) - sin(theta))/(1-sin^2(theta))=(1sin2(θ))1sin2(θ)sin(θ)1sin2(θ)

Explanation:

cos(theta) - tan(theta)*sec(theta)cos(θ)tan(θ)sec(θ)

=cos(theta) - sin(theta)/cos(theta) * 1/cos(theta)=cos(θ)sin(θ)cos(θ)1cos(θ)

=cos(theta) -sin(theta)/cos^2(theta)=cos(θ)sin(θ)cos2(θ)

=sqrt(1-sin^2(theta)) - sin(theta)/(1-sin^2(theta))=1sin2(θ)sin(θ)1sin2(θ)

=((1-sin^2(theta))sqrt(1-sin^2(theta)) - sin(theta))/(1-sin^2(theta))=(1sin2(θ))1sin2(θ)sin(θ)1sin2(θ)