What is sin^2theta/(1-tantheta) in terms of costheta?

1 Answer
Mar 3, 2016

costheta((1−cos^2theta))/(costheta-sqrt(1−cos^2theta))

Explanation:

sin^2theta/(1−tantheta) can be written in term of costheta, using identities

sin^2theta=1−cos^2theta i.e. sintheta=sqrt(1−cos^2theta)

and tantheta=sintheta/costheta

As such sin^2theta/(1−tantheta)

= (1−cos^2theta)/(1-sintheta/costheta)

Multi[lying numerator and denominator by costheta, we get

costheta((1−cos^2theta))/(costheta-sintheta) or

costheta((1−cos^2theta))/(costheta-sqrt(1−cos^2theta))