sin ( arcsin ( 3/5 ) + arctan ( - 2 ) )sin(arcsin(35)+arctan(−2))
= sin ( arcsin ( 3/5 ) + arcsin ( -2/sqrt5 ) )=sin(arcsin(35)+arcsin(−2√5))
= (sin arcsin (3/5)) (cos arcsin(-2/sqrt5))=(sinarcsin(35))(cosarcsin(−2√5))
+ (cos arcsin (3/5))( sin arcsin(-2/sqrt5))+(cosarcsin(35))(sinarcsin(−2√5))
= 3/5 cos arccos ( 1/sqrt5 ) + cos arccos ( 4/5) ( -2/sqrt5)=35cosarccos(1√5)+cosarccos(45)(−2√5)
= (3/5)( 1/sqrt5 ) - ( 4/5 ) ( 2/sqrt5 )=(35)(1√5)−(45)(2√5)
#= - 1/sqrt5