We need
sin^2theta+cos^2theta=1sin2θ+cos2θ=1
tantheta=sintheta/costhetatanθ=sinθcosθ
cottheta=costheta/sinthetacotθ=cosθsinθ
Therefore,
sintheta-tantheta+cotthetasinθ−tanθ+cotθ
=sintheta-sintheta/costheta+costheta/sintheta=sinθ−sinθcosθ+cosθsinθ
=sqrt(1-cos^2theta)-sqrt(1-cos^2theta)/costheta+costheta/sqrt(1-cos^2theta)=√1−cos2θ−√1−cos2θcosθ+cosθ√1−cos2θ
=(costheta(1-cos^2theta)-(1-cos^2theta)+cos^2theta)/(costhetasqrt(1-cos^2theta))=cosθ(1−cos2θ)−(1−cos2θ)+cos2θcosθ√1−cos2θ
=(costheta-cos^3theta-1+cos^2theta+cos^2theta)/(costhetasqrt(1-cos^2theta))=cosθ−cos3θ−1+cos2θ+cos2θcosθ√1−cos2θ
=(costheta+2cos^2theta-cos^3theta-1)/(costhetasqrt(1-cos^2theta))=cosθ+2cos2θ−cos3θ−1cosθ√1−cos2θ