What is sintheta-tantheta+cotthetasinθtanθ+cotθ in terms of costhetacosθ?

1 Answer
Apr 8, 2018

Please see the explanation below.

Explanation:

We need

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

tantheta=sintheta/costhetatanθ=sinθcosθ

cottheta=costheta/sinthetacotθ=cosθsinθ

Therefore,

sintheta-tantheta+cotthetasinθtanθ+cotθ

=sintheta-sintheta/costheta+costheta/sintheta=sinθsinθcosθ+cosθsinθ

=sqrt(1-cos^2theta)-sqrt(1-cos^2theta)/costheta+costheta/sqrt(1-cos^2theta)=1cos2θ1cos2θcosθ+cosθ1cos2θ

=(costheta(1-cos^2theta)-(1-cos^2theta)+cos^2theta)/(costhetasqrt(1-cos^2theta))=cosθ(1cos2θ)(1cos2θ)+cos2θcosθ1cos2θ

=(costheta-cos^3theta-1+cos^2theta+cos^2theta)/(costhetasqrt(1-cos^2theta))=cosθcos3θ1+cos2θ+cos2θcosθ1cos2θ

=(costheta+2cos^2theta-cos^3theta-1)/(costhetasqrt(1-cos^2theta))=cosθ+2cos2θcos3θ1cosθ1cos2θ