What is Tan(2arcsin(1/3))?

1 Answer
Sep 12, 2015

(4sqrt2)/7

Explanation:

Let arcsin(1/3)=theta

=>tan(2arcsin(1/3)) becomes color(brown)(tan(2theta))

and tan(2theta)=(2tan(theta))/(1-tan^2(theta)) color(red)(larr"this is what we are looking for"

  • So we need color(brown)tan(theta)

Here's how we do:

color(green)"Recall:" arcsin is the inverse trig function of sin
So since, arcsin(1/3)=theta
=>sin(theta)=1/3

=>1/sin(theta)=3=csc(theta)

=>csc(theta)=3

=>(csc(theta))^2=(3)^2

=>csc^2(theta)=9

Use the trig identity : cos^2(theta)+sin^2(theta)=1
Divide all through by sin^2(theta)
=>cot^2(theta)+1=csc^2(theta)
=>1/tan^2(theta)+1=csc^2(theta)
=>tan^2(theta)=1/(csc^2(theta)-1)
=>tan(theta)=sqrt(1/(csc^2(theta)-1))

=>tan(theta)=sqrt(1/(9-1))=sqrt(1/8)=sqrt(8)/8=(2sqrt(2))/8=color(brown)(sqrt2/4)

Finally,
=>tan(2theta)=(2tan(theta))/(1-tan^2(theta))=(2(sqrt2/4))/(1-(sqrt2/4)^2)=(8sqrt2)/(16-2)=color(blue)((4sqrt2)/7)