What is Tan(arcsin(3/5)+arccos(5/7))tan(arcsin(35)+arccos(57))?
2 Answers
Explanation:
Given that
Explanation:
Consider right angled triangles with sides:
3, 4, 53,4,5
5, 2sqrt(6), 75,2√6,7
Remember:
sin(theta) = "opposite"/"hypotenuse"sin(θ)=oppositehypotenuse
cos(theta) = "adjacent"/"hypotenuse"cos(θ)=adjacenthypotenuse
tan(theta) = "opposite"/"adjacent"tan(θ)=oppositeadjacent
Hence:
tan(arcsin(3/5)) = 3/4tan(arcsin(35))=34
tan(arccos(5/7)) = (2sqrt(6))/5tan(arccos(57))=2√65
Note that:
tan(alpha+beta) = (tan alpha + tan beta) / (1 - tan alpha tan beta)tan(α+β)=tanα+tanβ1−tanαtanβ
So we find:
tan(arcsin(3/5)+arccos(5/7)) = tan(arctan(3/4)+arctan((2sqrt(6))/5))tan(arcsin(35)+arccos(57))=tan(arctan(34)+arctan(2√65))
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (3/4+(2sqrt(6))/5)/(1-(3/4)((2sqrt(6))/5))tan(arcsin(35)+arccos(57))=34+2√651−(34)(2√65)
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (15+8sqrt(6))/(20-6sqrt(6))tan(arcsin(35)+arccos(57))=15+8√620−6√6
color(white)(tan(arcsin(3/5)+arccos(5/7))) = ((15+8sqrt(6))(10+3sqrt(6)))/((20-6sqrt(6))(10+3sqrt(6)))tan(arcsin(35)+arccos(57))=(15+8√6)(10+3√6)(20−6√6)(10+3√6)
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (150+45sqrt(6)+80sqrt(6)+144)/(200-108)tan(arcsin(35)+arccos(57))=150+45√6+80√6+144200−108
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (294+125sqrt(6))/92tan(arcsin(35)+arccos(57))=294+125√692
color(white)(tan(arcsin(3/5)+arccos(5/7))) = 147/46+125/92sqrt(6)tan(arcsin(35)+arccos(57))=14746+12592√6