What is the answer to cos (3pi/8)?

1 Answer
Apr 5, 2016

- (sqrt(2 - sqrt2)/2)

Explanation:

Call cos ((3pi)/8) = cos t --> cos 2t = cos ((3pi)/4) = -sqrt2/2
Apply the identity;
cos 2t = 2cos^2 t - 1 = - sqrt2/2
2cos^2 t = 1 - sqrt2/2 = (2 - sqrt2)/2
cos^2 t = (2 - sqrt2)/4
cos t = - (sqrt(2 - sqrt2))/2 --> since cos ((3pi)/4) is negative
Answer: cos t = cos ((3pi)/4) = - (sqrt(2 - sqrt2))/2