What is the antiderivative of (2x)/(sqrt(5 + 4x))?

1 Answer
Aug 23, 2016

I=1/8{5+4x-10lnsqrt(5+4x)}+C, or,

I=1/4(2x-5lnsqrt(5+4x))+K, where, K=5/8+C.

Explanation:

We take substn. 5+4x=t^2, so that, 4dx=2tdt, i.e., dx=1/2dt.

Also, 5+4x=t^2 rArr x=(t^2-5)/4. Therefore,

I=int(2x)/sqrt(5+4x)dx=1/2int{2(t^2-5)/4}/sqrt(t^2)dt=1/4int(t^2-5)/tdt

=1/4int(t^2/t-5/t)dt=1/4(t^2/2-5ln|t|)

=1/8(t^2-10ln|t|). Therefore,

I=1/8{5+4x-10lnsqrt(5+4x)}+C

Readjusting the Constant of Integration, we may like,

I=1/4(2x-5lnsqrt(5+4x))+K, where, K=5/8+C.

Enjoy Maths.!