What is the antiderivative of #ln(2x)/x^(1/2)#? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Feb 9, 2017 #= 2 x^(1/2) ( ln(2x) - 2) + C# Explanation: #int ln(2x)/x^(1/2) dx# We set it up for IBP: #= int ln(2x) d/dx(2 x^(1/2) ) dx# Applying the IBP: #= 2 x^(1/2) ln(2x) - int d/dx( ln(2x) )(2 x^(1/2) ) dx# #= 2 x^(1/2) ln(2x) - int 1/x * 2 x^(1/2) dx# #= 2 x^(1/2) ln(2x) - 2 int x^(-1/2) dx# #= 2 x^(1/2) ln(2x) - 2* 2 x^(1/2) + C# #= 2 x^(1/2) ( ln(2x) - 2) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1454 views around the world You can reuse this answer Creative Commons License