What is the antiderivative of (ln(x))^3?

1 Answer
Jan 8, 2016

I found: xln^3(x)-3xln^2(x)+6xln(x)-6x+c

Explanation:

We can try to evaluate:
int(ln(x))^3dx=
Set ln(x)=t
x=e^t
dx=e^tdt
So we get:
=intt^3e^tdt= we can try By Parts:
=t^3e^t-int3t^2e^tdt=t^3e^t-3intt^2e^tdt=
Again:
=t^3e^t-3[t^2e^t-int2te^tdt]=
=t^3e^t-3t^2e^t+6intte^tdt=
Again:
=t^3e^t-3t^2e^t+6te^t-6inte^tdt=
=t^3e^t-3t^2e^t+6te^t-6e^t+c
But t=ln(x)
And remember that e^(ln(x))=x. So:
=xln^3(x)-3xln^2(x)+6xln(x)-6x+c