What is the argument and module of the complex number sin(i+3) ?

1 Answer
Mar 6, 2017

See below.

Explanation:

Using de Moivre's identity

sin x=(e^(ix)-e^(-ix))/(2i) we have

sin(i+3) = (e^(i(i+3))-e^(-i(i+3)))/(2i) = -1/2 i (e^(-1 + 3 i) - e^(1 - 3 i))=

=(1/(2 e) + 1/2 e) sin(3)+i (1/2 e-1/(2 e) ) cos(3)=

=sqrt[1 + e^4 - 2 e^2 cos(6)]/(2 e) e^(iphi)

where

phi = tan^-1((e^2-1) /(e^2+1)cot(3))