What is the average value of the function #f(x) = 1/x^2# on the interval #[1,3]#?
1 Answer
Mar 23, 2016
Explanation:
The average value of the function
#1/(b-a)int_a^bf(x)dx#
Applying this to the given situation gives:
#=1/(3-1)int_1^3 1/x^2dx=1/2int_1^3 x^-2dx#
Using the integration rule
#intx^ndx=x^(n+1)/(n+1)+C#
So, we want to evaluate
#x^(-2+1)/(-2+1)=x^-1/(-1)=-1/x#
From
#=1/2[-1/x]_1^3=1/2(-1/3-(-1/1))=1/2(-1/3+1)#
#=1/2(2/3)=1/3#