What is the axis of symmetry and vertex for the graph #y=-¼x^2-2x-6#?

2 Answers
Dec 13, 2017

(1) : The Axis of symmetry is the line #x+4=0, and,

(2) : The Vertex is #(-4,-2)#.

Explanation:

The given eqn. is, #y=-1/4x^2-2x-6, i.e.#

# -4y=x^2+8x+24, or, -4y-24=x^2+8x #,

and completing the square of the R.H.S., we have,

#(-4y-24)+16=(x^2+8x)+16#,

#:. -4y-8=(x+4)^2#.

#:. -4(y+2)=(x+4)^2....................(ast)#.

Shifting the Origin to the point #(-4,-2),# suppose that,

#(x,y)# becomes #(X,Y).#

#:. x=X-4, y=Y-2, or, x+4=X, y+2=Y.#

Then, #(ast)# becomes, #X^2=-4Y..............(ast')#.

We know that, for #(ast'),# the Axis of Symmetry & the Vertex are,

the lines #X=0,# and #(0,0),# resp., in the #(X,Y)# System.

Returning back to the original #(x,y)# system,

(1) : The Axis of symmetry is the line #x+4=0, and,

(2) : The Vertex is #(-4,-2)#.

Dec 13, 2017

Axis of symmetry: #-4#

Vertex: #(-4,-2)#

Explanation:

Given:

#y=-1/4x^2-2x-6#, is a quadratic equation in standard form:

where:

#a=-1/4#, #b=-2#, and #c=-6#

Axis of Symmetry: the vertical line that divides the parabola into two equal halves, and the #x#-value of the vertex.

In standard form, the axis of symmetry #(x)# is:

#x=(-b)/(2a)#

#x=(-(-2))/(2*-1/4)#

Simplify.

#x=2/(-2/4)#

Multiply by the reciprocal of #-2/4#.

#x=2xx-4/2#

Simplify.

#x=-8/2#

#x=-4#

Vertex: maximum or minimum point of a parabola.

Substitute #-4# into the equation and solve for #y#.

#y=-1/4(-4)^2-2(-4)-6#

Simplify.

#y=-1/4xx16+8-6#

#y=-16/4+8-6#

#y=-4+8-6#

#y=-2#

Vertex: #(-4,-2)# Since #a<0#, the vertex is the maximum point and the parabola opens downward.

graph{-1/4x^2-2x-6 [-12.71, 12.6, -10.23, 2.43]}